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Abstract-An open tube bundle is immersed in a fluid. The tubes, which are oriented verticaliy, generate 
heat and the fluid enters the bottom of the bundle with uniform velocity and temperature and flows up 
through the bundle outside of the tubes. The flow is assumed to be stable and laminar. The thermal bound- 
ary layer equations were solved for pitch-to-diameter ratios of 1.2-20 with air as the fluid, allowing 
density, viscosity and thermal conductivity to vary with temperature. 

Local Nusselt numbers were correlated with a modified Graetz number and showed paramedic de- 
pendence on both pitch-to-diameter ratio and dimensionless flow rate. 

Correlations of dimensionless pow rate with dimensionless tube bundle length were unaffected by 
considerations of variable physical properties provided the dimensionless flow rates were evaluated 
at outlet conditions. 

Experiments performed on two tube bundles (pitch-to-diamet~ ratios of 1.68 and 2.03) under the con- 
dition of constant wall heat flux verified the theoretical predictions of Nusselt numbers. Predicted flow 
rates were displaced below the predicted curves due to constrictions in the flow area caused by the tube 

spacers. 

NOMENCLATURE 

heat transfer area; 
grouping of terms defined by equation 
(34); 
tube radius; 
heat capacity: 
tube diameter; 
dimensionless volumetric flow rate; 
inlet value of F; 
outlet value of F; 
volumetric flow rate: 
inlet value off; 
Grashof number; 
modified Grashof number 

g~~Atb4. _ 
137; ’ 

acceleration due to gravity; 

* Now with Tennessee Eastman Company, Kingsport, 
Tennessee. 

1425 

h 
local’ 

k 

k 

LO’ 
L* 3 

heat transfer coefficient based on 
local temperature difference; 
thermal conductivity of fluid at local 
temperature: 
k evaluated at ambient temperature: 
dimensionless length = l/Gr* ; 
modish dimensionle~ length 

L 

= (q - 1)4 i 

length of tube bundle; 
exponent describing temperature de- 
pendence of k; 
.Nusselt number; 
exponent describing temperature de- 
pendence of I(; 
dimensionless pressure defect 

PDR, pitch-to- diameter ratio; 

E 
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Pr. 

P3 

PO? 

Prandtl number; 
pressure: 

;: 

Q'. 
% 

value of p at ambient conditions: 
absolute viscosity : 
ambient value of/c: 
kinematic viscosity: 
ambient value of 11: 
P,,At: 
fluid density : 
ambient value of I’. 

R, 
Re, 
R m’ 
r. 
r 
77’ 

hydrostatic pressure of fluid at am- 
bient temperature: 
pressure defect = p - pot 
dimensionless rate of heat removal up 
to a particular level in the bundle: 
Q evaluated at exit; 

rate of heat removal up to a particular 
level in the bundle; 

dimensionless radial position = r/b; 

Reynolds number: 
dimensionless value of rm: 

radial position : 
radius of area affected by tube; 
dimensionless temperature 

t - r,, ZZ---- 
At ’ 

dimensionless mixing-cup tempera- 
ture: 

T, evaluated at exit; 

dimensionless wall temperature; 
absolute temperature: 

ambient value of T: 
temperature: 

mixing-cup temperature; 
ambient temperature: 
wall temperature: 

characteristic temperature difference; 
dimensionless velocity in axial direc- 
tion 

h7U 
~__ , 

h,Gr* ’ 
mean value of U; 
inlet value of L’; 
velocity in z-direction: 

inlet value of II: 

dimensionless radial velocity com- 
ponent = Dvlv,: 
radial velocity component; 
dimensionless axial position = z/lGr* 

axial position. 

THE EFFECTS of free convection in vertical tube 
bundles are significant in engineering problems 
involving spent nuclear fuel assemblies. An 
analysis of flow development of air in a vertical 

tube was carried out previously and the results 
compared with the experimental work of Elen- 
baas [l]. The present analysis in many respects 
is similar to that for the tube, but differs not only 
in the geometry of the channel but also in that 
the variations of many fluid properties with 
temperature were taken into account. 

Specifically, the study entails solving the 
thermal boundary-layer equations in cylindrical 
coordinates via a finite difference technique. All 
fluid properties, except heat capacity and Prandtl 
number, were allowed to vary with temperature. 
Calculations were made for the velocity and 
temperature profiles: and from these, various 
quantities such as rate of heat removal, Nusselt 
numbers, and correlations of volumetric flow 
rate as a function of a modified Grashof number 
were obtained. In addition, an analytical solu- 
tion was obtained for fully developed flow. 

With a situation as mathematically difficult 
as in-line flow through a tube bundle, some 

simplifying assumptions must be made. Edge 
effects are ignored by assuming an infinite array 
of tubes in the bundle. It is then possible to focus 
attention to a single tube and analyze the flow 
and heat transfer processes taking place due to 
the influence of this one tube. 

Following a procedure used by Friedland 
and Bonilla [2] for a tube bundle with an 
equilateral triangular pitch, a hexagon can be 
circumscribed about a tube to represent the flow 
area and fluid assignable to that particular tube. 

Greek letters 

03 thermal coefficient of volume expan- 
sion : 

INTRODUCTION 
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It is assumed that this situation can be approxi- 
mated closely enough by replacing the hexagon 
with a circle of equal area (thus maintaining the 
same hydraulic radius as before) with velocity 
and temperature profiles that would be obtained 
in the case of the shear stress and heat flux 
dropping to zero at the circumference of the 
circle. 

THE CONSERVATION EQUATIONS 

In general, the flow of fluids can be described 
by the continuity, momentum, and energy 
equations. In addition to the usual boundary 
layer assumptions previously made for the tube 
[l], the following assumptions are made: 

(a) p is a function of temperature only as 
described by the ideal gas law. 

(b) p is a function of temperature only and its 
variation is described by ii = ~,,(‘i;,T~y. 

(c) k is a function of temperature described by 
a similar variation: k = k,(T/T,)“. 

(d) The heat capacity and Prandtl number are 
constant. 

With these assumptions and substituting the 
dimensionless variables defined in the Nomen- 
clature, the equations become: 
Continuity 

which can be rewritten as 

au av v < dT dT 
az+aR+i?=---- 5T+ 1 

“E’“jYj > (2) 1 
where 

g = B,(AO. 

This substitution is possible since /I, for an 
ideal gas, is the reciprocal of absolute tempera- 
ture. 
Momentum 

Using the temperature variations for p and k 
introduced earlier and noting that 

a/i ap at -=-__ 
ar at a$ 

the momentum equation can be written as 

+ (tT+ 1)“” 

‘+ n(tT + l>” cg$$ (3) 

Energy 
Noting that as for 11, dk/ar can be written as 

(ak/at) (at/&) the energy equation becomes 

(4) 

Denoting the mass flow rate by FE we see that 
if the initial velocity is termed uO then 

Fi = uOp07c(ri - b2) = 231 ‘r uprdr. (5) 
b 

The initial volumetric flow rate is simply rii/p,. 
At any position the flow rate is given by 

f = 27~ 7 urdr, 
b 

(6) 

while the initial rate can be found at any level 
from 

(7) 

The quantitiesf and fO can be put in terms of 
dimensionless variables to yield 

RPl 

f F=-------= 
v,EGr*n 

2 URdR 
s 

(8) 
1 

and 

Rm 

F, = f 
o=2 v,lGr*n s 

TdR. 
I (CT+ 1) 

V) 
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F, is independent of changes in height and 
can provide a numerical check on the consistency 
of the results to be obtained from the finite 
difference solution. This quantity can also be 

related to the initial velocity as follows: 

NU 
2 

local = __.- 
7;, -- T,’ 

(19) 

The dimensionless heat absorbed per unit time 

can be shown to be 

Q= qko 22 

rcpOCplvOGr*(q//l)w, = % (20) 
F, = 

u,7qr~ - b2) 
V,lGr*71 

= u&R; - 1). (10) 

The boundary conditions for the solution of 
equations (2H4) can be expressed as follows for 

constant wall heat flux : 
forZ = Oand 1 < R s R,,,: 

Fil c’ = (Ri _ *)’ v= 0, T= 0: (11) 

forR = 1andZ 70: 

I 

r;=o,v=o.“‘= -1 

dR ((T+ 1)” 
(12) 

for R = R,,, and Z, >,O: 

EL(y) JLo’7__0_ 
dR ’ 'c?R - 

(13) 

forZ = OandZ = L: P = 0. (14) 

Equation (12) follows quite naturally from 
Fourier’s law written for R = 1 : 

(%), = - k(& (13 

and from the definition of the characteristic At 
used in this work, 

The local heat transfer coefficient is defined 

by 
4 0 zw= h 

local (L - LJ (17) 

and 

h D 
local (qlA),,P 
ko 0, - Qk,, . 

(18) 

Substituting the dimensionless variables into 
the last equation, it is found that 

(16) 

where 

q = i 27cCp~& - t,,)r dr. (31) 

Note that the above expression for Nu is in 

terms of k,. To obtain the local Nusselt number 
in terms of k evaluated at the local mean 
temperature,equation(19)isdividedby(l + <Tm)“‘. 

For constant heat flux at the tube walls. the 
conventional concept of developed flow must be 
modified. Since the driving force is sustained 
(i.e. the difference in temperature of the wail and 
the fluid does not approach zero), it is possible 
to specify hydrodynamically and thermally 

developed flow by defining V = 0 and 8 r;jzZ = 0. 
These conditions, however, are adequate only 
for flow with non-variable density. When density 

varies. as in this case, 8UizZ can never equal 
zero. Therefore, one must be content with the 
condition when V = 0 as describing a pseudo- 
hydrodynamically developed flow. Thermally 
developed flow is achieved when ?T,l?Z equals 
a constant. With the simplification usually 
wrought when one considers developed flow 
an analytical solution can be obtained. However. 

this situation is not true in the present investiga- 
tion because of the additional non-linearities 
introduced by considering /I_ 1~ and k to be 
variable with temperature. 

The continuity, momentum and energy equa- 

tions for this pseudo-developed flow situation 

are, respectively : 

(22) 
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As the above equations stand, they are 

(23) as 
The continuity equation can now be written 

au,_ 5 8% --p-Umaz’ 
az 5Tm + 1 (29) 

which when solved for U,,, yields 

(24) U,,, = li,(rT, + 1); (30) 

hope- 
however, 

c 
lessly non-linear. The problem is to remove the 
non-linearity and still retain some semblance li, = (Ra’: 1) 

of temperature dependent fluid properties. This 
criterion can be achieved by considering these 

and F = F, (tT, + 1). 

properties to be dependent upon the mixing-cup 
Therefore, 

temperature only, and neglecting their variation F 

with temperature across the flow channel. That ‘in = (R; _ 1)’ 

:; ak Solving the equation of motion for T gives 
-_=-_= 
& ar 

0 and (CT+ 1) = (tTm + 1). (25) 
T= li 

au 

With these assumptions, equations (22)-(24) 
“(?z + (<Tm + 1)g 

become - (<T, + I)“+’ (V’U), (31) 

au r uar (26) 
where -= 

az ~T~+I az' 
T 

u$ = - (tTm + 1); + T+ (tT+ l)“+’ 
(32) 

Turning now to the energy equation, it is (27j found by integrating from R = 1 to R = R,,, 
that 

ug = (tTm + l),+ l a2T 
az Pr [=+;%I. (28) 

The term I/’ aU/aZ on the left hand side of 
equation (27) also poses a problem of non- 
linearity. Noting that this term drops out for 
non-variable density, and since variations of 
physical properties are assumed to be a function 
of mixing-cup temperature only, it seems proper 
to replace li aU/aZ by U,,, ar;JaZ. Likewise, in 
the continuity equation U,,, will be used in place 
of U. The variation of T with R will not change 
with changing level in the channel: that is, 
T(R,, Z,) = constant xT(R,, Z,). Hence, aT/aZ 
can be replaced by aTm/aZ. 

aT 2 

E=F,Pr’ 
Making this substitution and substituting the 
expression for T in equation (31) into the energy 
equation yields 

where 

V4U + a4U = 0, (33) 

a4 = 
2 

F&l + Tm)2+m+n’ 
(34) 

The solution can be written as 

U = G ber(aR) + H bei + M ker(aR) 

+ N kei(aR). (35) 
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The constants G, H, M and N can be evaluated 
by using the conditions: 

Z;=OatR=l, 

E=()atR=R 
aR In’ 

(1 + s’T,)F, = s ERdR, 
1 

and 

ar 
;R = Oat R = R,,,. 

Having the expression for velocity, the energy 

equation can now be solved for the temperature 
profile. Starting with equation (28) and substi- 
tuting the expression for li from equation (35) 

gives the following: 

= u4[G ber(aR) + H bei 

+ M ker(aR) + N kei(aR)] 

x (i;T, + l)“+‘RdR. (36) 

If one integrates from R = 1 to R = R, it is 

found that 

ZT I 

R;)R+ (1 + <T,)” 
= a3{G[R bei’ 

- bei’( - H[R ber’(aR) - her’(a)] 

+ M[R kei’(aR) - kei’(a)] - N[R ker’(aR) 

- ker’(u)])(5Tm + l),+ I. (37) 

Upon rearranging and integrating again, the 
dimensionless temperature is 

T = u’{G[bei(uR) - bei( - H[ber(aR) 

- ber(a)] + M[kei(uR) - kei(a)] 

- N[ker(uR) - ker(a)]}(rT, + l)“+ ’ 

-u”[G bei’ - H her’(u) + M kei’(u) 

- N ker’(a)](cT* + l)nil 1nR 

1nR .- - 
(1 - <T,)” + lw’ 

(38) 

The evaluation of 7‘ cannot be carried any 
further since there is no a priori knowledge of 

T,. However. for purposes of comparing these 
results with those obtained from the numerical 
solution the above is sufficient. since 7’: is 

available there. 

NUMERICAL SOLUTIONS FOR DEVELOPING 
FLOW 

A typical implicit-method finite difference 
solution was carried out. At a point along the 
channel the temperature distribution across the 
channel was calculated from the energy equa- 
tion using axial and radial velocity components 

from the increment below. The axial velocity 
distribution was calculated from the momentum 
equation, and the radial velocity distribution 
from the continuity equation. The procedure is 
identical to that for the tube [l] and is given in 
detail in [3], 

THEORETICAL RESULTS 

The finite difference equations were solved for 

the velocity and temperature profiles at various 
stages of the flow development. From physical 
property data in Chemical Engineers’ Hund- 
book [4], the following values of the parameters 

for air were used: 

Pr = 0.7, n = 0.768. tn = 0.857. 

It was assumed that heat capacity and Prandtl 
number are constant. The logic behind these 
assumptions might be questioned because, if Pr 
is independent of temperature, then Cri x 
(Q’TO)m-‘, For moderately large changes in 
temperature (e.g. T/T, = 2) the resulting error 
in Cp is about 6 per cent. The results to be 
presented should be viewed with this discrepancy 

in mind. 
The range of pitch-to-diameter ratios used in 

the calculations was 1.2-2.0. In each set of 

calculations, fifty increments were used in the 
radial direction while the increment size in the 
flow direction was changed for each level in 
the bundle. Changing AZ was done so as to have 
small increments near the entrance (less than 
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l/500 of the total dimensionless length) where i ‘O I ’ I ’ ’ I ’ ’ I ’ ’ 1 ’ ’ 
changes take place most rapidly and yet permits PDR= - _ 

completion of the calculations without an E - 
2.0 
I.8 

excessive amount of computer time, since larger 6 1 - I.6 - 

increments are used further downstream. E 
I.4 _ 

The nature of the results is such that constant g - I.2 _ 

fluid properties need not be considered separately 5 10~ - 
from variable fluid properties. For 5 equal to 2 - 

zero and a given pitch-to-diameter ratio, log F 2 _ 

(or log F,) vs log L yields a straight line with $ lo-2- 
slope approximately equal to 0515. Of course, g - 

the parametric behaviour for varying PDR is 5 _ 

observed. Of considerably more importance is + ;10-7 III II1 (II III I 
that a plot of F’ (the prime denotes outlet value 5 lC4 10-S Id2 16' I IO 

of F) vs. L for a given PDR and various values 
Dimensionless length, L 

of if results in a single line independent of 5. FIG. 1. Dimensionless outlet flow rate as a function of 

This is significant in that one need not search dimensionless length showing parametric dependence on 

for a reference temperature which allows repre- 
PDR. Constant wall heat flux. 

sentation of various heating rates on a single 
curve as was done in the work of Sparrow and Local Nusselt numbers based on diameter 
Gregg [5]. The relationship of F’ as a function and with k evaluated at the local mixing-cup 
of L is shown in Fig. 1 for PDR ranging from temperature are plotted as a function of a 
1.2 to 2.0. The dimensionless quantity representa- modified Graetz number in Fig. 2. Not only are 
tive of the total heat transfer, Q’ is also shown the curves parametric in PDR, but also exhibit 
as one curve for all PDR and all 5, and as noted dependence on F’. This dependence is most 
in equation (20) is equal to 2 L/Pi-. pronounced for Nu approaching its asymptotic 

Curve F’ 
0 0.003 
b 0.016 

I 1~000 
j 0.200 
k 2.000 

FIG. 2. Local Nusselt number as a function of modified 
Graetz number showing parametric dependence on PDR 

and F. Constant wall heat flux. 
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value and is a result of the effect that heat transfer 
has on the velocity and temperature profiles. 
Small values of F’ (large heating rates and/or 
large radii) produce relatively flat velocity and 

temperature profiles even far from the entrance 
while the velocity and temperature profiles for 

large values of F’ approach the shape usually 
associated with forced convection heat transfer. 

The general shape of the curves is readily 

explained by considering the definition of Nu 
in terms of the dimensionless variables, 

2 
Nu=,_ m,. 

Right at the entrance, the tube surface tempera- 

ture is nearly equal to the mean fluid temperature 
and finally assumes a linear variation paralleling 
the air temperature. Thus, Nu should be very 
large near the entrance and approach a constant 
value near the exit as in Fig. 2. 

Evaluating both the ordinate and abscissa at 
the bulk temperature removes most of the 
parametric behaviour associated with variations 
in <. For example, consider the case of PDR = 1.4 
and F’ = 0.0246. The changes in Nu brought 

about by varying 5 from 0.0 to 0.4 were less than 
one per cent at the point where calculations for 
5 = 0.0 were terminated. Some parametric 
behaviour remains in that larger values of the 
abscissa are required for the larger value of 5. 

APPARATUS 
FIG. 3. Schematic diagram of end piece showing tube holders 

The data in this investigation were obtained 
from two triangular-pitch tube bundles. These 
tube bundles differ only in pitch-to-diameter 
ratios-one being 1.68: the other, 2.03. Other 
pertinent characteristics of the bundle are as 
follows : 

and spacers. 

Overall length 48.5 in. 
Tube outside diameter $ in. 

Wall thickness OXI48 in. 

Number of tubes in the bundle 42 

The resulting end piece is shown schematically 
in Fig. 3. The smaller pitch-to-diameter ratio 

was achieved by using space]-s of 2 i-in. dia 
copper tubing while the larger ratio was obtained 
by substituting a-in. tubing. By using these end 
pieces, only one set of tubes had to be fitted with 
heating elements since the tubes could be re- 
moved from the first bundle and placed in the 

second. 
The tubes of 304 stainless steel were arranged Each of the forty-two tubes in the bundle was 

in seven staggered rows of six tubes per row so fitted with an electrical heating element which 

as to produce a bundle with an overall cross 
section that was almost square. 

In order to investigate in-line or parallel flow 

through the tube bundle, it was essential that 
the ends be kept as open as possible. To accom- 
plish this, special end pieces were constructed of 

short (one-half inch long) copper tubing and 
tubing couplings. The couplings used were 
standard &in. i.d. rolled-stop copper coupling 

cut in half at the rolled stop. These, serving as 
holders for the stainless steel tubes, were held 
in the proper triangular pitch configuration by 
brazing them to the pieces of copper tubing. 

N 

1 
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consisted of a four-hole ceramic thermocouple 
tube threaded with approximately 16 ft of 
&chrome wire (12.6 mit). The ceramic “spaghetti” 
was 4 ft long and & in. dia. The ends of the 
nichrome wire were connected to small brass 
screws which were allowed to extend beyond 
the end of the stainless steel tube when the 
heating elements were cemented in place and 
served to connect the heating elements to the 
power source. Ceramic cement was used to hold 
the ends on the heating elements in place. To 
eliminate convection currents between the heat- 
ing element and the stainless steel tube this 
annular space was filled with granular mag- 
nesium oxide. A schematic diagram of a 
representative tube is presented in Fig. 4. 

The sides of the bundle were enclosed with 
;-in. Transite asbestos insulation. Fiber glass 
batting (3;~in. thick) was used next, followed 
by an outer shell of $-in. plywood. The entire 
assembly was mounted on a uni-strut frame so 

insulation tube 

12.6 ml 
nichrome we 

Granular 
magnesium 

oxide 

4-Hole ceramic 
insulation tubing 

Ceramic 
cement 

~ Brass terminals 

FIG. 4. Details of it repr~entative tube, 

that the bottom was approximately 18 in. above 
a grate floor. Further details of the apparatus 
are given in [3]. 

In the experimental runs the following vari- 
ables were measured: 

1. Electrical power input, 
2. Tube wall temperature at selected loca- 

tions, 
3. Outlet mixing-cup temperature, 
4. Temperature difference across insulation, 
5. Outlet volumetric flow rate. 

Five tubes had ~opper~onstantan thermo- 
couples embedded in their walls at various levels. 
The positioning of these tubes in the bundle is 
shown in Fig. 3. The center tube was equipped 
with four thermocouples while the remaining 
tubes each had two. Referring again to Fig. 3 
and letting the top of the page be “north”, the 
distance from the bottom of the bundle to each 
thermocouple location is given below: 

Tube location Distance from bottom of bundle. in. 

Center I +,3,6,36 
NE 3Q36.0 
SE 6.0,6*0 
NW 6.0,6.0 
SW 3.0,36.0 

To avoid having to make tedious traverses 
across the tube bundle cross section to obtain 
the mixing-cup temperature, a mixing-cup device 
was constructed of light-weight cardboard sand- 
wiched between aluminium foil. This laminated 
sheet was shaped into a truncated cone and a 
short cylinder of similar material was fitted into 
the smaller end of the cone (Fig. 5). A thermo- 
couple was positioned in the lower half of this 
cylinder. Also, radiation shields were positioned 
so that the thermocouple junction could not 
“see” the hot tubes nor the colder objects in the 
room. 

Outlet air flow rate was determined with a 
Short and Mason 4-m. dia vane anemometer 
which was calibrated in place above the tube 
bundle using rotameters as secondary standards. 
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ä lin _I 

I/-- 
Radiation shield 

L-Ii 
Rodiotion shield 

---a_ w _8--. 

Wire support 

&- 4 in.dio. --I 

FIG. 5. Details of mixing cup. 

This anemometer could measure flow rates as 

low as 05 fps with reasonable accuracy. 

EXPERIMENTAL RESULTS 

The data obtained from experiments on the 
two pitch-to-diameter ratio tube bundles were 
correlated in accordance with the theoretical 
developments for constant heat flux. 

Flow rate 

As noted previously, a plot of dimensionless 
volumetric flow rate at outlet conditions, F’, 
vs. dimensionless length, I, produces curves 

parametric in pitch-to-diameter ratio but not in 

5. Figure 6 shows the results of correlating the 
experimental data in this manner for pitch-to- 
diameter ratios of 1.68 and 2.03. The heating 
rates represented on these two curves range from 

15 to 107 Btujhft’. Also shown in this figure are 
curves obtained from the finite difference solu- 
tion. Although the experimental curves have the 
same slope as the theoretical. they are displaced 

somewhat and appear to satisfy the relationship 
between F’ and L for a smaller pitch-to-diameter 
ratio. This is interpreted as indicating that less 
area is available for flow in the experimental 
equipment than was assumed in the theoretical 
calculations. This decreased area can be attri- 
buted to the end pieces that hold the tubes in their 
proper triangular pitch configuration. From 
measurement of wall thickness of the holders 
and spacers. it was found that 21.0 per cent and 
25.5 per cent of the requisite area was blocked 
out for PDR of 1.68 and 2.03. respectively. The 
larger percentage for PDR of 2.03 accounts for 
the larger disagreement between observed and 
theoretical values seen in Fig 6. 

Because of this decrease in flow caused by the 
decreased flow area in the end pieces. the 
boundary conditions in the theoretical calcula- 
tions were altered so that L~th~o~C~icai) = 
L (cxperimen,al,. In satisfying the above. the original 
conditions that P = 0 at Z = 0 and % = I, 
could no longer be satisfied without making 

some additional adjustments. One can think of 

-- PDR = 2.03 
Expenmentol values 

0 PDR .= I .66 
0 I I , 10 PDRz2.03 ( 

0 01 0 02 00 
L 

FIG. 6. Comparison of experimental and theoretical 
dimensionless flow rate. PDR = 1.68 and 2.03. Constant 

wall heat flux. Pr = 0.7. 
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the decreased flow rate being caused by an 
additional pressure drop attributable to the 
end pieces. Ideally, the pressure drop as a 
function of flow rate could be determined from 
first principles and introduced into the numerical 
calculations at the appropriate places and 
satisfy both the boundary conditions Lttheoretica,) 
= L~experimen,alj and P = 0 at 2 = 0 and 2 = L. 
Since it makes no difference where the additional 
pressure drop is encountered, one can simply 
let the numerical calculations proceed until 
L (theoretical) = L 

(experimental) 
and the additional 

pressure drop is determined in the process since 
pressure is determined at each Z increment 
along with the velocity and temperature profiles. 

As pointed out previously, the outlet volu- 
metric flow rate was determined using a Short 
and Mason vane anemometer. Having the flow 
rate, inlet and mean outlet temperature allowed 
determination of the net overall rate of heat 
input to the air. Combining this heating rate 
with physical measurements of the tube bundle 
and appropriate fluid properties yields Gr*, the 
modified Grashof number. From the definition 
of F, it is seen that the above information is 

sufficient to determine the ordinate and abscissa 
for the correlations in Fig. 6. 

The heat input was taken as the correct value 
of the heating rate to use in determining the 
characteristic temperature difference, At. The 
heat losses encountered were less than ten per 
cent of the heat input for the larger pitch-to- 
diameter ratio bundle. Ignoring this loss which 
is, in effect, a deviation from the assumed 
infinite array of tubes, does not introduce serious 
error into the correlations. 

Nusselt correlation 
Figures 7 and 8 compare the experimental 

values of local Nusselt number with those 
obtained from the numerical solution for PDR 
of 1.68 and 2.03 respectively. Since the theoretical 
curves of NM as a function of a modified Graetz 
number are parametric in F’, curves representa- 
tive of the largest and smallest values of the 
outlet dimensionless flow rate are presented for 
each pitch-to-diameter ratio. 

Each group of points represent temperature 
measurements at four axial positions in the 
bundle: 15,3*0,6.0 and 36.0 in. from the bottom. 

I I I I I I t I 

- Theoretic01 

0 Experiment01 

I I I I I I , I 

lo-” 2 5 10-c 2 5 10.’ 2 5 I 

z(R,2 -INl+ET,)“/(4F,Pr) 

FIG. 7. Comparison of experimental and theoretical local 
Nusselt numbers. PDR = 2.03, Pr = 0.7. 
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Since the heating elements were positioned 
approximately i-in. from the bottom end of each 
tube and because the end piece tends to keep 
the velocity profile flat for the first $ in. of the 
btmdle, the Z position used to determine the 
abscissa in Figs. 7 and 8 are measured from the 

top of the lower end piece. The tube wall tcm- 
peratures were obtained using thermocouples 

I I I 

and 155”F, respectively. The higher experi- 
mental values can be attr-ibuted to three possible 
mechanisms: (1) axial conduction in the tube 
wall, (2) conduction error in the thermocouple 
leads. and (3) decreased air flow rate due to the 
influence of the end pieces. 

The effect of (1) and (2) should increase with 

increasing heat flux while the influence of (3) on 

I-- 

- Theoretlcol 

o Experimental 

- 

FIG. 8. Comparison of experimental and theoretical local 
Nusselt numbers. PDR = 1.68, Pr = 0.7. 

embedded in the.tube wall while the local mean the Nusselt number is slight at any value of the 
air temperature was determined by assuming a heat flux. However, the experimental results 
linear temperature variation with axial position show better agreement for this three-foot posi- 
and by knowing inlet and mean outlet tempera- tion at higher heating rates. The reason for this 
ture. behaviour is not certain. 

Agreement between the experimental values 
and theoretical curves is quite good except for 
those values associated with temperature read- 
ings at the axial position three feet from the 
bottom of the tube bundle. Maximum disagree- 
ment is 25 per cent for the worst run: PDR - 168. 
(q/A)w = 40 Btu/hft’. Experimental and pre- 
dicted wall temperatures for this case are 160’F 

CONCLUSIONS 

The effect of physical property variations on 
the behaviour of dimensionless flow rate as a 
function of modified Grashof number can be 
removed by correlating the outlet value of F 
(i.e. F’) with dimensionless tube bundle length. 

Local Nusselt numbers show a strong para- 
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metric dependence on pitch-to-diameter ratio 
and a weak dependence on dimensionless flow 
rate. 

Obstructions, such as tube holders or spacers 
in the tube bundle, have a pronounced effect on 
the flow rate through the bundle but do not 
greatly influence the predictability of the local 
Nusselt numbers. 
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DGVELOPPEMENT D’UN GCOULEMENT AXIAL PAR CONVECTION NATURELLE A 
TRAVERS UN FAISCEAU TUBULAIRE 

R&aun&Un faisceau ouvert de tubes est immerge dans un fluide. Ces tubes, orient& verticalement gentrent 
de la chaleur et le fluide entrant par la base du faisceau, B vitesse et tem+rature uniformes, s’tcoule vers le 
haut extkrieurement aux tubes. L’6coulement est supposC &tre permanent et laminaire. Les Equations de 
couche limite thermique sont rksolues pour des rapports pas/diamktre de 12 et 2,0 le fluide &ant de I’air et 
la masse volumique, la viscosit6 et la conductivitC thermique pouvant varier avec la tempkrature. 

Les nombres de Nusselt locaux ont CtB determints en fonction d’un nombre de Graetz modi!% et mon- 
trent la dCpendance parametrique au rapport pas diamttre et au d&bit adimensionnel. 

Les relations entre le d&bit adimensionnel et la longueur du faisceau de tubes sans dimension ne sont 
pas moditiCes par les proprittts physiques variables si le d&bit adimensionnel est Cvaluk aux conditions 
extemes. 

Des exp6riences men&s sur deux faisceaux de tubes (les rapports pasidiamktre Btant de 1,68 et 2,03) 
sous la condition de flux thermique constant B la paroi vtrifient les estimations thboriques des nombres 
de Nusselt. Les flux estimCs se placent au-dessous des courbes calcultes g cause de la rkduction de la section 

de passage du fluide dues a l’entretoise d’tcartement. 

ENTWICKLUNG EINER FREIEN AXIALEN KONVEKTIONSSTRijMUNG DURCH EIN 
ROHRBCNDEL 

Zasammenfassun~Ein offenes Rohrbiindel wird in ein Fluid getaucht. Die Rohre, die senkrecht gerichtet 
sind, erzeugen Wlrme und das Fluid dringt am unteren Ende des Biindels mit gleichmlssiger Ge- 
schwindigkeit und Temperatur ein und fliesst ausserhalb der Rohre durch das Btindel nach oben. Es wird 
stabile, lamina.re Strijmung vorausgesetzt. Die thermischen Grenzschichtgleichungen wurden fiir Ver- 
hiiltnisse Abstand/Durchmesser von I,2 bis 2,0 mit Luft als Fluid gel&t. Luft ermijglicht es, die Dichte, 
Viskositit und WLrmeleitftihigkeit mit der Temperatur zu verlndem. 

Lokale Nusselt-Zahlen wurden auf eine moditizierte Graetz-Zahl bezogen, sie waren abhtigig von 
den Parametern Abstand/Durchmesser und dimensionsloser Durchfluss. 

Die Wechselbeziehungen zwischen dimensionslosem Durchfluss und dimensionsloser Rohrbiindel- 
lLnge blieben unberiihrt von den Betrachtungen veranderlicher physikalischer Eigenschaften, voraus- 
gesetzt, die dimensionslosen Durchfliisse wurden bei Ausflussbedingungen ausgewertet. 

Experimente, die an zwei Rohrbiindeln (Abstand/Durchmesser Verhatnis von 1,68 und 3,03) bei 
konstantem WLrmefluss von der Wand durchgefiihrt wurden, bestltigten die theoretischen Aussagen der 
Nusselt-Zahlen. Berechnete Str6mungsverhlltniss lagen unter den berechneten Kurven, da von den 

RohrzwischenrSiumen Verengungen im StrBmungsgebiet verursacht wurden. 

PABBBTBE CBOBOAHO-HOHBEHTBBHOI’O OCECBMMETPHYHOI’O 
TEqEHkiH CHBOBb HYYOH TPYE 

AHHOT~~H~I--OTK~~IT~II# nO’iOK Tpy6 IIorpyHteH- B H(IIAKOCTb. rIpIl BbIAeJIeHMll Terma B 
BepTaKanbHO paCllOJlO~KeHHbIX Tpy6ax H(IIAIFOCTb IlOCTynaeT B HIIH(HIoIo ‘IaCTb ny%a C nOC- 
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Tf~JittttOii Clio~)~~GTbtO II T~~lIlC’paTj’pOit Ii Ifu~ttHMaeTCH BtWpX 110 IIOYXy BAf2 Tpyfi, Ilpe;(ltf3t?r- 

r8eTCH, ‘ITO Tf?Yf?HIl~ SCTOirYIIF3OP 14 .~~MIiHapHOf’. ~‘~l~BttC?HLUl TPFtJIOBOrO ttOt~~aHtiYHO~O C.-ton 

[WLtIatOTCH :I.TiIt f~TIIOIII~Itliii IIIDI’a vi ;fHaMeTpy OT 1 ,2 ;lO 2,0, JcOraa B IiaYPCTt3f’ FliIi~tiOCTlrl 

lICt1OJIL:3!‘f!Tf:II nO:C:~j-X, 11~‘11”‘” ~OtI~f’liaC’TCSl Ii:1Mf’ttett1i~ II.IOTHOCTIl, nR:ItiOCTII Ii Tt’ItJO- 

II~OBO~ttOCTIi c’ li:IM~tt~tlt1~‘M TCRiIIC~G~T~phl, 

Onpe~~~;lfI;IaCb :laDtlCt1MOCTb ;IOtia,lLHhtX :rriavrmii Y~cm I~yf~cf~nbTa UT ~io~~Ic)cI~3ipf~t3att- 

IIOITO ‘Illcnn r~‘~TI~a, II uaii:lrtta napaweTptrYeCtfan RanJlCMMOCTb IiaIi OT OTHOtItf’tIMff IItat2 Ii 

,ylla\lCTp~, Tati II 0’1’ ~f’~~~l~~~RIf?ptIOl~ CHOpOCTIi IlOTOIia. 

II:* :IRnIICtIMOCTb il~~l~‘“:Wlf+t0ii f’tiO[‘OCTIl JIOTOFra 01’ %%!pa:Dt~pHOii &ttiHbI IIyYlia Tp)‘fi 

,111 t3;ItIfItoT ~~c~pf~~~c~wt,tf~ f~ui:~ttYeCwe CnoiirTna rrpn y,-IOBIIII. ef711 heapasxepttbt~ Ctropol’TIi 

Tf’YC’HIifl 13t~I’I~i~‘,~I’IIIlICb 110 ~C;IOBIIfI\I tt;, IibtXOfi,i~. 

TPO})eTIi~If’VIiI7t’ i’aCYf!Tbt ZHlaYf’H3lii ‘tIIC.lR IIYCCe;IbTB 6tKIII llPORk!peHbI ~li~II~~~IiM~tITH:ILIl(, 

II:I ,fn?;s II~JIG~X ~py6 C OTHOJIJPJII~~M IIIWR tc ;(riakteTpy 1 .A8 II 2,03 ttpci ~~OCTO~~IIHOM T~~IJ;IOBOM 

IlOTOIiC tra f’Tt’tllit’. rkj. I~YCHHLI~ ~liO~~f~f~Tti IlOTOtia paCttO;tiWRtOTCFt HRH(f2 paCYeTttLIX IipHBhIX 

:3a (“ICT C~ifiCItiifI WYf’HIln IIOTflIi;I. HhI~t3attt~Ot’O !_fTpfJiiCTnO>f ;[;Itl ~3ilfC~l[Iflf III;lT‘;l, 


