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Abstract—An open tube bundle is immersed in a fluid. The tubes, which are oriented vertically, generate
heat and the fluid enters the bottom of the bundle with uniform velocity and temperature and flows up
through the bundle outside of the tubes. The flow is assumed to be stable and laminar. The thermal bound-
ary layer equations were solved for pitch-to-diameter ratios of 1-2-2:0 with air as the fluid, allowing
density, viscosity and thermal conductivity to vary with temperature.

Local Nusselt numbers were correlated with a modified Graetz number and showed parametric de-
pendence on both pitch-to-diameter ratio and dimensionless flow rate.

Correlations of dimensionless flow rate with dimensionless tube bundle length were unaffected by
considerations of variable physical properties provided the dimensionless flow rates were evaluated
at outlet conditions.

Experiments performed on two tube bundles (pitch-to-diameter ratios of 1-68 and 2-03) under the con-
dition of constant wall heat flux verifiéd the theoretical predictions of Nusselt numbers. Predicted flow
rates were displaced below the predicted curves due to constrictions in the flow area caused by the tube

spacers.
NOMENCLATURE h.» heat transfer coefficient based on
heat transfer area; local temperature difference;
grouping of terms defined by equation k, thermal conductivity of fluid at local
(34); , temperature;
tube radius; k,, k evaluated at ambient temperature;
heat capacity; L dimensionless length = 1/Gr*;
tube diameter; ¥, modified dimensionless length
dimensionless volumetric flow rate; L
inlet value of F; =
outlet value of F; (R, — 1)
volumetric flow rate; I, length of tube bundle;
inlet value of f; m, exponent describing temperature de-
Grashof number; pendence of k;
modified Grashof number Nu,  -Nusselt number;
9B, Ath* n, exponent describing temperature de-
=7 pf:ndenpe of u;
0 P, dimensionless pressure defect
acceleration due to gravity; b

* Now with Tennessee Eastman Company, Kingsport,

pol2viGr?’

Tennessee. PDR, pitch-to- diameter ratio:
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Pr, Prandtl number;
P, pressure:
Pos hydrostatic pressure of fluid at am-

bient temperature:

P, pressure defect = p — p,:

0, dimensionless rate of heat removal up

to a particular level in the bundle:

0 Q evaluated at exit;

q, rate of heat removal up to a particular
level in the bundle;

R, dimensionless radial position = r/b;

Reynolds number:

dimensionless value of r

r, radial position:

radius of area affected by tube:

T dimensionless temperature

bty

At

dimensionless mixing-cup tempera-

ture:

T evaluated at exit:

dimensionless wall temperature:

absolute temperature:

ambient value of T

temperature;

mixing-cup temperature:;

ambient temperature:

wall temperature;

characteristic temperature difference ;

dimensionless velocity in axial direc-

tion

b*u

v, Gr*’

mean value of U;

U inlet value of U ;

u, velocity in z-direction:

u,. inlet value of u:

|4 dimensionless radial velocity com-

ponent = bu/v,:

v, radial velocity component;

Z, dimensionless axial position = z/IGr*

axial position.

SN

{ﬂ ?H SN -~

=13

N

Greek letters
B, thermal coefficient of volume expan-

sion:
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By value of §f at ambient conditions:

I, absolute viscosity:

7 ambient value of y:

v, kinematic viscosity:

Vo ambient value of v:

& BoAL:

P fluid density:

o ambient value of p.
INTRODUCTION

THE BFFECTS of free convection in vertical tube
bundles are significant in engineering problems
involving spent nuclear fuel assemblies. An
analysis of flow development of air in a vertical
tube was carried out previously and the results
compared with the experimental work of Elen-
baas [1]. The present analysis in many respects
is similar to that for the tube, but differs not only
in the geometry of the channel but also in that
the variations of many fluid properties with
temperature were taken into account.

Specifically, the study entails solving the
thermal boundary-layer equations in cylindrical
coordinates via a finite difference technique. All
fluid properties, except heat capacity and Prandtl
number, were allowed to vary with temperature.
Calculations were made for the velocity and
temperature profiles; and from these, various
quantities such as rate of heat removal, Nusselt
numbers, and correlations of volumetric flow
rate as a function of a modified Grashof number
were obtained. In addition, an analytical solu-
tion was obtained for fully developed flow.

With a situation as mathematically difficult
as in-line flow through a tube bundle, some
simplifying assumptions must be made. Edge
effects are ignored by assuming an infinite array
of tubes in the bundle. It is then possible to focus
attention to a single tube and analyze the flow
and heat transfer processes taking place due to
the influence of this one tube.

Following a procedure used by Friedland
and Bonilla [2] for a tube bundle with an
equilateral triangular pitch, a hexagon can be
circumscribed about a tube to represent the flow
area and fluid assignable to that particular tube.
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It is assumed that this situation can be approxi-
mated closely enough by replacing the hexagon
with a circle of equal area (thus maintaining the
same hydraulic radius as before) with velocity
and temperature profiles that would be obtained
in the case of the shear stress and heat flux
dropping to zero at the circumference of the
circle.

THE CONSERVATION EQUATIONS

In general, the flow of fluids can be described
by the continuity, momentum, and energy
equations. In addition to the usual boundary
layer assumptions previously made for the tube
[1], the following assumptions are made:

(a) p is a function of temperature only as
described by the ideal gas law.

(b) p is a function of temperature only and its
variation is described by u = pu (/T )"

{c) k is a function of temperature descnbed by
a similar variation: k = ky(T/T,)".

(d) The heat capacity and Prandtl number are
constant.

With these assumptions and substituting the
dimensionless variables defined in the Nomen-
clature, the equations become;

Continuity

ou v v 8T T

ZTERTR™ ﬁ(A’)[V?ﬁi +U az] M

which can be rewritten as

ou v Vv 14 oT oT
AT il

oz "R R £T+1[ 6R+LBZ]’ @

where

é = ﬁo(At)-

This substitution is possible since B, for an
ideal gas, is the reciprocal of absolute tempera-
ture.

Momentum

Using the temperature variations for x4 and k

introduced earlier and noting that

on_ouor
or  adter
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the momentum equation can be written as

U eU

4—(5’1f‘+1)"““[’7 Uy L a_o]

2 0T U

oP
—ET+ D+ T

3)

Energy
Noting that as for u, dk/Or can be written as
(0k/0t) (Ot/dr) the energy equation becomes

f?_T_ aT m+ 1
ba +V6R P(§T+1)
*T 10T m(ET + 1Y (oT\?
[ﬁf +Eﬁ] e (572) @

Denoting the mass flow rate by m we see that
if the initial velocity is termed u, then

m = uyp,n(r: — b*) = 2n j uprdr. (5)

The initial volumetric flow rate is simply m/p,,.
At any position the flow rate is given by

f=2n | urdr, ©)
b

while the initial rate can be found at any level
from

'm

fo=2n

b

u L rdr.

7
ol M

The quantities f and f, can be put in terms of
dimensionless variables to yield

Rm
f
F= 1

vIGrn URdR ®

1

and
f Rm DvR

F, = 0 = . (4]
® " v, IGr*n 2 J' T+ l)dR @)
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F, is independent of changes in height and
can provide a numerical check on the consistency
of the results to be obtained from the finite
difference solution. This quantity can also be
related to the initial velocity as follows:

F, - un(r’ — b?)
v, IGr*n

The boundary conditions for the solution of
equations (2)+4) can be expressed as follows for
constant wall heat flux:
forZ=0and1 < R <R :

= U (R2 —~1).  (10)

U= Fo V=0,T=0: (11
SRy T )
forR=1and Z > 0:
¢T -1
U=0,V=0—=——— 12
oR  (ET+ 1) (12)
for R = R _and Z‘>JO:
ou cT
R 0, O’aR 0 (13)
forZ =0and Z = L: P =0. (14)

Equation (12) follows quite naturally from
Fourier’s law written for R = I:

(5). = -+(%).

and from the definition of the characteristic At
used in this work,

(15)

(q/4),b
=

The local heat transfer coefficient is defined
by

At = (16)

0

(17)

and

D A).D
hlocal — (q/ )w . (18)
kO (tw - tm)kO
Substituting the dimensionless variables into
the last equation, it is found that
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2
A

The dimensionless heat absorbed per unit time

can be shown to be
0= gk, _ 2Z
7rp0CplvOGr”‘(q/A)W T Pr

Nu {19

local

(20)
where

q= £ 2rC pult — t ) dr. (21
Note that the above expression for Nu is in
terms of k. To obtain the local Nusselt number
in terms of k evaluated at the local mean
temperature,equation(19)isdivided by (1 +ET )™

For constant heat flux at the tube walls, the
conventional concept of developed flow must be
modified. Since the driving force is sustained
(i.e. the difference in temperature of the wall and
the fluid does not approach zero), it is possible
to specify hydrodynamically and thermally
developed flow by defining V = 0 and ¢U/¢Z =0.
These conditions, however, are adequate only
for flow with non-variable density. When density
varies, as in this case, 0U/CZ can never equal
zero. Therefore, one must be content with the
condition when V= 0 as describing a pseudo-
hydrodynamically developed flow. Thermally
developed flow is achieved when ¢T/0Z equals
a constant. With the simplification usually
wrought when one considers developed flow
an analytical solution can be obtained. However.
this situation is not true in the present investiga-
tion because of the additional non-linearities
introduced by considering p. x4 and k to be
variable with temperature.

The continuity, momentum and energy equa-
tions for this pseudo-developed flow situation
are, respectively:

v ¢ T .
0z Er+1-az (22)
U oP
U _ _(r o : nE 1
7 (CT+1)6Z+(¢T+ 1)

N 62U+1 oU T
OR* R OR
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naT oU N

+ né(ET + 1) R R’ (23)
,6T mt 1 0*T 1 0T
(JEZ (fT—F 1) [6R2+§ 6—R:|
mEET + 1) (0T\?

As the above equations stand, they are hope-
lessly non-linear. The problem is to remove the
non-linearity and still retain some semblance
of temperature dependent fluid properties. This
criterion can be achieved by considering these
properties to be dependent upon the mixing-cup
temperature only, and neglecting their variation
with temperature across the flow channel. That
18,
on 0ok

il Oand ({T+ 1) = ET, + 1). (25)
With these assumptions, equations (22)—(24)

become

U & oT
0Z (T, +1 9z’ (26
U oP ) o
Uz = —@T,+ D + T+ ET+ 1)
X @+ L ou 27
&R TrR&l @
and
0T (T, + )" '[&*T 1 0T
Vsz= 7 w®TR&ERl B

The term U 0U/6Z on the left hand side of
equation (27) also poses a problem of non-
linearity. Noting that this term drops out for
non-variable density, and since variations of
physical properties are assumed to be a function
of mixing-cup temperature only, it seems proper
to replace U 0U/0Z by U, 0U, /0Z. Likewise, in
the continuity equation U, will be used in place
of U. The variation of T with R will not change
with changing level in the channel; that is,
T(R,Z,) = constant xT(R,, Z,). Hence, 0T /0Z
can be replaced by 0T, /0Z.
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The continuity equation can now be written

as
ou, 4 .
oz e yimaz P
which when solved for U, yields
U,=UET + 1); (30)
however,
T FO
Uo (R2 - 1)
and F = F, (T, + 1).
Therefore,
, F
Un (R: — 1)

Solving the equation of motion for T gives

oU
T=U,—2 + (¢T, +1)

™ 0Z
- (€T, + 1)"+1 (V2U), (31
where
1 ¢
2 32
v R 6R<R 6R) 32)

Turning now to the energy equation, it is
found by integrating from R=1 to R =R
that

or 2
0Z  F,Pr’

Making this substitution and substituting the
expression for T in equation (31) into the energy
equation yields

VAU + a*U =0, 33)
where
‘= Fo(l + 2Tm)2+'"+"' (34
The solution can be written as
U = G ber(aR) + H bei(aR) + M ker(aR)
+ N kei(aR). (35)
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The constants G, H, M and N can be evaluated
by using the conditions:

U=0atR =1,
oU
= t =
R OatR =R _,
. Rm
(1 +ET)F, = f URdR,
1
and
oT
— =0atR =R .
(R a R,

Having the expression for velocity, the energy
equation can now be solved for the temperature
profile. Starting with equation (28) and substi-
tuting the expression for U from equation (35)
gives the following:

T
d <R %ﬁ) = a*[G ber(aR) + H bei(aR)

+ M ker(aR) + N kei(aR)]
x ((T, + 1y 'RdR.  (36)

If one integrates from R =1 to R =R, it is
found that

cT 1

R T+ ey

— bei'(a)] — H[R ber'(aR) — ber'(a)]

+ MR kei'(aR) — kei'(a)] — N[Rker'(aR)
— ker'(@)]} (6T, + 1" 1. (37)

R = a*{G[R bei'(aR)

Upon rearranging and integrating again, the
dimensionless temperature is

T = a*{G[bei(aR) — bei(a)] — H[ber(aR)
— ber(a)] + M[kei(aR) — kei(a)]
— Nfker(aR) — ker(a)|} ¢T  + 1!
—a®[G bei'(a) — H ber'(a) + M kei'(a)
— Nker(@)](ET, + 1y ' 1nR

1nR
- T,

38
1 —eTy v (38)
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The evaluation of T' cannot be carried any
further since there is no a priori knowledge of
T . However, for purposes of comparing these
results with those obtained from the numerical
solution the above is sufficient. since 7 is
available there. )

NUMERICAL SOLUTIONS FOR DEVELOPING
FLOW

A typical implicit-method finite difference
solution was carried out. At a point along the
channel the temperature distribution across the
channel was calculated from the energy equa-
tion using axial and radial velocity components
from the increment below. The axial velocity
distribution was calculated from the momentum
equation, and the radial velocity distribution
from the continuity equation. The procedure is
identical to that for the tube [1] and is given in
detail in [3].

THEORETICAL RESULTS
The finite difference equations were solved for
the velocity and temperature profiles at various
stages of the flow development. From physical
property data in Chemical Engineers’ Hand-
book [4], the following values of the parameters
for air were used:

Pr=07,n= 0768, m = 0857.

It was assumed that heat capacity and Prandtl
number are constant. The logic behind these
assumptions might be questioned because, if Pr
is independent of temperature, then C,
(T'T,)"~". For moderately large changes in
temperature (e.g. 7/T; = 2) the resulting error
in C_is about 6 per cent. The results to be
presented should be viewed with this discrepancy
in mind.

The range of pitch-to-diameter ratios used in
the calculations was 1-2-2-0. In each set of
calculations, fifty increments were used in the
radial direction while the increment size in the
flow direction was changed for each level in
the bundle. Changing AZ was done so as to have
small increments near the entrance (less than
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1/500 of the total dimensionless length) where
changes take place most rapidly and yet permits
completion of the calculations without an
excessive amount of computer time, since larger
increments are used further downstream.

The nature of the results is such that constant
fluid properties need not be considered separately
from variable fluid properties. For ¢ equal to
zero and a given pitch-to-diameter ratio, log F
(or log F,) vs log L yields a straight line with
slope approximately equal to 0-515. Of course,
the parametric behaviour for varying PDR is
observed. Of considerably more importance is
that a plot of F’ (the prime denotes outlet value
of F) vs. L for a given PDR and various values
of £ results in a single line independent of &
This is significant in that one need not search
for a reference temperature which allows repre-
sentation of various heating rates on a single
curve as was done in the work of Sparrow and
Gregg [5]. The relationship of F’ as a function
of L is shown in Fig. 1 for PDR ranging from
1-2t02-0. The dimensionless quantity representa-
tive of the total heat transfer, Q' is also shown
as one curve for all PDR and all £, and as noted
in equation (20) is equal to 2 L/Pr.

24

F

10 T T LI LI L - T

10 10’ 10" | 10
Dimensionless length, L

Outlet dimensionless volumetric flow rate,

F1G. 1. Dimensionless outlet flow rate as a function of
dimensionless length showing parametric dependence on
PDR. Constant wall heat flux.

Local Nusselt numbers based on diameter
and with k evaluated at the local mixing-cup
temperature are plotted as a function of a
modified Graetz number in Fig. 2. Not only are
the curves parametric in PDR, but also exhibit
dependence on F'. This dependence is most
pronounced for Nu approaching its asymptotic

Nu

20+

Local Nusselt number,
~o
o

Curve F'

r——Ta»0Q0 oo
[]
(o]
o

10 10"

Z(Rw ~\I+ET,) "/ (4F, Pr)

FIG. 2. Local Nusselt number as a function of modified

Graetz number showing parametric dependence on PDR

and F. Constant wall heat flux.
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value and is a result of the effect that heat transfer
has on the velocity and temperature profiles.
Small values of F' (large heating rates and/or
large radii) produce relatively flat velocity and
temperature profiles even far from the entrance
while the velocity and temperature profiles for
large values of F' approach the shape usually
associated with forced convection heat transfer.

The general shape of the curves is readily
explained by considering the definition of Nu
in terms of the dimensionless variables,

2

Nu=—"° .
“TTCT)

Right at the entrance, the tube surface tempera-
ture is nearly equal to the mean fluid temperature
and finally assumes a linear variation paralleling
the air temperature. Thus, Nu should be very
large near the entrance and approach a constant
value near the exit as in Fig. 2.

Evaluating both the ordinate and abscissa at
the bulk temperaturc removes most of the
parametric behaviour associated with variations
in ¢. For example, consider the case of PDR = 14
and F’' = 0:0246. The changes in Nu brought
about by varying ¢ from 0-0 to 0-4 were less than
one per cent at the point where calculations for
& =00 were terminated. Some parametric
behaviour remains in that larger values of the
abscissa are required for the larger value of &.

APPARATUS
The data in this investigation were obtained
from two triangular-pitch tube bundles. These
tube bundles differ only in pitch-to-diameter
ratios—one being 1-68: the other, 2:03. Other
pertinent characteristics of the bundle are as
follows:

Overall length 485 in.
Tube outside diameter 5 in.
Wall thickness 0-048 in.

Number of tubes in the bundle 42

The tubes of 304 stainless steel were arranged
in seven staggered rows of six tubes per row so

L. P. DAVISandJ. J. PERONA

as to produce a bundle with an overall cross
section that was almost square.

In order to investigate in-line or parallel flow
through the tube bundle, it was essential that
the ends be kept as open as possible. To accom-
plish this, special end pieces were constructed of
short (one-half inch long) copper tubing and
tubing couplings. The couplings used were
standard §-in. id. rolled-stop copper coupling
cut in half at the rolled stop. These, serving as
holders for the stainless steel tubes, were held
in the proper triangular pitch configuration by
brazing them to the pieces of copper tubing.

1”
QOO0
sc¥eYeYelole
eYeYeYeYeYe2

Selec]e]ele

F1G. 3. Schematic diagram of end piece showing tube holders
and spacers.

The resulting end piece is shown schematically
in Fig. 3. The smaller pitch-to-diameter ratio
was achieved by using spacers of i-in. dia
copper tubing while the larger ratio was obtained
by substituting 2-in. tubing. By using these end
pieces, only one set of tubes had to be fitted with
heating elements since the tubes could be re-
moved from the first bundle and placed in the
second.

Each of the forty-two tubes in the bundle was
fitted with an electrical heating element which
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consisted of a four-hole ceramic thermocouple
tube threaded with approximately 16 ft of
nichrome wire (12-6 mil). The ceramic “spaghetti”
was 4 ft long and {5 in. dia. The ends of the
nichrome wire were connected to small brass
screws which were allowed to extend beyond
the end of the stainless steel tube when the
heating elements were cemented in place and
served to connect the heating elements to the
power source. Ceramic cement was used to hold
the ends on the heating elements in place. To
eliminate convection currents between the heat-
ing element and the stainless steel tube this
annular space was filled with granular mag-
nesium oxide. A schematic diagram of a
representative tube is presented in Fig. 4.

The sides of the bundle were enclosed with
Lin. Transite asbestos insulation. Fiber glass
batting (3Z-in. thick) was used next, followed
by an outer shell of 2-in. plywood. The entire
assembly was mounted on a uni-strut frame so

-

e

Thermocouple
insulation tube

26 mi
nichrome wire Thermocouple
junction
Granular 4-Hole ceramic
magnesium insulation tubing
oxide
Stainless
¢ steel tube
L
I ™
Ceramic
cement

Brass terminals

Fi1G. 4. Details of a representative tube.
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that the bottom was approximately 18 in. above
a grate floor. Further details of the apparatus
are given in [3]

In the experimental runs the following vari-
ables were measured:

1. Electrical power input,

2. Tube wall temperature at selected loca-
tions,

3. Outlet mixing-cup temperature,

4, Temperaturedifferenceacrossinsulation,

5. Outlet volumetric flow rate.

Five tubes had copper—constantan thermo-
couples embedded in their walls at various levels.
The positioning of these tubes in the bundle is
shown in Fig, 3. The center tube was equipped
with four thermocouples while the remaining
tubes each had two. Referring again to Fig, 3
and letting the top of the page be “north”, the
distance from the bottom of the bundle to each
thermocouple location is given below:

Tube location Distance from bottom of bundle, in.

Center 1-5,3,6,36
NE 30,360
SE 60,60
NwW 60,60
Sw 30,360

To avoid having to make tedious traverses
across the tube bundle cross section to obtain
the mixing-cup temperature, a mixing-cup device
was constructed of light-weight cardboard sand-
wiched between aluminium foil. This laminated
sheet was shaped into a truncated cone and a
short cylinder of similar material was fitted into
the smalier end of the cone (Fig. 5). A thermo-
couple was positioned in the lower half of this
cylinder. Also, radiation shields were positioned
so that the thermocouple junction could not
“see” the hot tubes nor the colder objects in the
room.

Outlet air flow rate was determined with a
Short and Mason 4-in. dia vane anemometer
which was calibrated in place above the tube
bundle using rotameters as secondary standards.
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1in. H
Radiation shield
-
Thermocouple 1o ¥ Thermocouple
junction ) ! \-——insulafion tube

Radiation shield

Wire support

f—— 4in.dia.

F1G. 5. Details of mixing cup.

This anemometer could measure flow rates as
low as 0-5 fps with reasonable accuracy.

EXPERIMENTAL RESULTS

The data obtained from experiments on the
two pitch-to-diameter ratio tube bundles were
correlated in accordance with the theoretical
developments for constant heat flux.

Flow rate

As noted previously, a plot of dimensionless
volumetric flow rate at outlet conditions, F’,
vs. dimensionless length, L, produces curves
parametric in pitch-to-diameter ratio but not in

L. P. DAVISandJ. J. PERONA

¢. Figure 6 shows the results of correlating the
experimental data in this manner for pitch-to-
diameter ratios of 1-68 and 2-03. The heating
rates represented on these two curves range from
15 to 107 Btu/hft?. Also shown in this figure are
curves obtained from the finite difference solu-
tion. Although the experimental curves have the
same slope as the theoretical, they are displaced
somewhat and appear to satisfy the relationship
between F’ and L for a smaller pitch-to-diameter
ratio. This is interpreted as indicating that less
area is available for flow in the experimental
equipment than was assumed in the theoretical
calculations. This decreased area can be attri-
buted to the end pieces that hold the tubes in their
proper triangular pitch configuration. From
measurement of wall thickness of the holders
and spacers, it was found that 21-0 per cent and
255 per cent of the requisite area was blocked
out for PDR of 1-68 and 2-03, respectively. The
larger percentage for PDR of 2:03 accounts for
the larger disagreement between observed and
theoretical values seen in Fig. 6.

Because of this decrease in flow caused by the
decreased flow area in the end pieces, the
boundary conditions in the theoretical calcula-
tions were altered so that L . .=

(experimental): 111 SAtisfying the above. the original
conditions that P=0 at Z=0 and Z = L
could no longer be satisfied without making
some additional adjustments. One can think of

-0 T —T T L E—
P
./'
P
-
05F . O 4
s
-
F : P
< (9 Theoretical curves
. - PDR = |-68
o2 7 -— PDR = 2:03
e Experimental voiues
© O PDR =168
o1 , © , L , | © ppR=203
-0 002 005 [OX] 02 05 10

Fig. 6. Comparison of experimental and theoretical
dimensionless flow rate. PDR = 1-68 and 2-03. Constant
wall heat flux. Pr = 0-7.
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the decreased flow rate being caused by an
additional pressure drop attributable to the
end pieces. Ideally, the pressure drop as a
function of flow rate could be determined from
first principles and introduced into the numerical
calculations at the appropriate places and
satisfy both the boundary conditions L, ... ica)
= L, perimental) and P=0atZ =0and Z = L.
Since it makes no difference where the additional
pressure drop is encountered, one can simply
let the numerical calculations proceed until
L(theoretical) = (experimental) and the additiona]
pressure drop is determined in the process since
pressure is determined at each Z increment
along with the velocity and temperature profiles.

As pointed out previously, the outlet volu-
metric flow rate was determined using a Short
and Mason vane anemometer. Having the flow
rate, inlet and mean outlet temperature allowed
determination of the net overall rate of heat
input to the air. Combining this heating rate
with physical measurements of the tube bundle
and appropriate fluid properties yields Gr*, the
modified Grashof number. From the definition
of F, it is seen that the above information is
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sufficient to determine the ordinate and abscissa
for the correlations in Fig. 6.

The heat input was taken as the correct value
of the heating rate to use in determining the
characteristic temperature difference, At. The
heat losses encountered were less than ten per
cent of the heat input for the larger pitch-to-
diameter ratio bundle. Ignoring this loss which
is, in effect, a deviation from the assumed
infinite array of tubes, does not introduce serious
error into the correlations.

Nusselt correlation

Figures 7 and 8 compare the experimental
values of local Nusselt number with those
obtained from the numerical solution for PDR
of 1-68 and 2-03 respectively. Since the theoretical
curves of Nu as a function of a modified Graetz
number are parametric in F’, curves representa-
tive of the largest and smallest values of the
outlet dimensionless flow rate are Bresented for
each pitch-to-diameter ratio.

Each group of points represent temperature
measurements at four axial positions in the
bundle: 1-5, 3-0, 6-0 and 36-0 in. from the bottom.

20 T T T T

=hD/k

Nu

Local Nusselt number,.
4]
)

— Theoretical

O Experimental

102 2

Z(R,E-\I+ET,) "/ (4F, Pr)

FI1G. 7. Comparison of experimental and theoretical local
Nusselt numbers. PDR = 203, Pr = 0-7.
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Since the heating elements were positioned
approximately 3-in. from the bottom end of each
tube and because the end piece tends to keep
the velocity profile flat for the first J in. of the
bundle, the Z position used to determine the
abscissa in Figs. 7 and 8 are measured from the
top of the lower end picce. The tube wall tem-
peratures were obtained using thermocouples

L. P. DAVISandJ. J. PERONA

and 155°F, respectively. The higher experi-
mental values can be attributed to three possible
mechanisms: (1) axial conduction in the tube
wall, (2) conduction error in the thermocouple
leads, and (3) decreased air flow rate due to the
influence of the end pieces.

The effect of (1) and (2) should increase with
increasing heat flux while the influence of (3) on

20 T T T

=hD/k

NMu

Local Nusselt number,

— Theoretical

O Experimental

5
Q
~
o

Z(R, = +ET, )" 1(4F, Pr)

FiG. 8. Comparison of experimental and theoretical local
Nusselt numbers. PDR = 168, Pr = 0-7.

embedded in the.tube wall while the local mean
air temperature was determined by assuming a
linear temperature variation with axial position
and by knowing inlet and mean outlet tempera-
ture.

Agreement between the experimental values
and theoretical curves is quite good except for
those values associated with temperature read-
ings at the axial position three feet from the
bottom of the tube bundle. Maximum disagree-
ment is 25 per cent for the worst run: PDR — 168,
(g/A), = 40 Btu/hft’>. Experimental and pre-
dicted wall temperatures for this case are 160°F

the Nusselt number is slight at any value of the
heat flux. However, the experimental results
show better agreement for this three-foot posi-
tion at higher heating rates. The reason for this
behaviour is not certain.

CONCLUSIONS
The effect of physical property variations on
the behaviour of dimensionless flow ratc as a
function of modified Grashof number can be
removed by correlating the outlet value of F
(i.e. F') with dimensionless tube bundle length.
Local Nusselt numbers show a strong para-
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metric dependence on pitch-to-diameter ratio
and a weak dependence on dimensionless flow
rate.

Obstructions, such as tube holders or spacers
in the tube bundle, have a pronounced effect on
the flow rate through the bundle but do not

3.

convection flow of a gas in a heated vertical open tube,
Int. J. Heat Mass Transfer 14, 889-903 (1971).

. A. J. FRIEDLAND and C. F. BONILLA, Analytical study of

heat transfer rates for parallel flow of liquid metals
through tube bundles, 4.1.Ch.EJI 7, 107-122 (1961).

L. P. Davis, Development of free convection flow through
a tube bundle, Ph.D. Dissertation, The University of
Tennessee (1967).

greatly influence the predictability of the local 4. Chemical Engineers’ Handbook, 3rd. ed., pp. 270 and
461. McGraw-Hill, New York (1950).
Nusselt numbers. 5. E. M. Sparrow and J. L. GREGG, Variable fluid-property
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DEVELOPPEMENT D'UN ECOULEMENT AXIAL PAR CONVECTION NATURELLE A
TRAVERS UN FAISCEAU TUBULAIRE

Résumé—Un faisceau ouvert de tubes est immergeé dans un fluide. Ces tubes, orientés verticalement générent
de la chaleur et le fluide entrant par la base du faisceau, 4 vitesse et température uniformes, s’écoule vers le
haut extérieurement aux tubes. L’écoulement est supposé étre permanent et laminaire. Les équations de
couche limite thermique sont résolues pour des rapports pas/diamétre de 1,2 et 2,0 le fluide étant de air et
la masse volumique, la viscosité et la conductivité thermique pouvant varier avec la température.

Les nombres de Nusselt locaux ont été déterminés en fonction d’un nombre de Graetz modifié et mon-
trent la dépendance paramétrique au rapport pas diamétre et au débit adimensionnel.

Les relations entre le débit adimensionnel et la longueur du faisceau de tubes sans dimension ne sont
pas modifiées par les propriétés physiques variables si le débit adimensionnel est évalué aux conditions
externes.

Des expériences menées sur deux faisceaux de tubes (les rapports pas/diamétre étant de 1,68 et 2,03)
sous la condition de flux thermique constant a la paroi vérifient les estimations théoriques des nombres
de Nusselt. Les flux estimés se placent au-dessous des courbes calculées 3 cause de la réduction de la section

de passage du fluide dues a Pentretoise d’écartement.

ENTWICKLUNG EINER FREIEN AX]ALEI\{_KONVEKTIONSSTROMUNG DURCH EIN
ROHRBUNDEL

Zusammenfassung—Ein offenes Rohrbiindel wird in ein Fluid getaucht. Die Rohre, die senkrecht gerichtet
sind, erzeugen Wirme und das Fluid dringt am unteren Ende des Biindels mit gleichmassiger Ge-
schwindigkeit und Temperatur ein und fliesst ausserhalb der Rohre durch das Biindel nach oben. Es wird
stabile, laminare Strémung vorausgesetzt. Die thermischen Grenzschichtgleichungen wurden fiir Ver-
hiltnisse Abstand/Durchmesser von 1,2 bis 2,0 mit Luft als Fluid geldst. Luft ermdglicht es, die Dichte,
Viskositit und Wirmeleitfahigkeit mit der Temperatur zu verindern.

Lokale Nusselt-Zahlen wurden auf eine modifizierte Graetz-Zahl bezogen, sie waren abhingig von
den Parametern Abstand/Durchmesser und dimensionsloser Durchfluss.

Die Wechselbezichungen zwischen dimensionslosem Durchfluss und dimensionsloser Rohrbiindel-
linge blieben unberiihrt von den Betrachtungen verinderlicher physikalischer Eigenschaften, voraus-
gesetzt, die dimensionslosen Durchfliisse wurden bei Ausflussbedingungen ausgewertet.

Experimente, die an zwei Rohrbiindeln (Abstand/Durchmesser Verhiltnis von 1,68 und 3,03) bei
konstantem Wirmefluss von der Wand durchgefiihrt wurden, bestitigten die theoretischen Aussagen der
Nusselt-Zahlen. Berechnete Stromungsverhiltnisse lagen unter den berechneten Kurven, da von den

Rohrzwischenrdumen Verengungen im Strémungsgebiet verursacht wurden.

PA3BUTHUE CBOBOJHO-KOHBEKTUBHOI'O OCECUMMETPUYHOT'O
TEYEHUA CKBO3b ITIYYOK TPVB

AuBOTAIMA—OTHKPHITHA TO4YOK TPYO NOrpyseH. B KUAKOCTb. Ilpm BHeNeHUN Temaa B
BEPTHKAJIBHO PACITONIOMEHHBIX TPyOaxX :KUIKOCTE IIOCTYNAET B HUMHIOKW YacTh NMYyYKa ¢ 1oc-
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TOAHHOH CKOPOCTBIO N TEMNEPATYPOil 1 IOIHUMAETCH BBepX [0 nodxy BHe Tpyh. llpeuora-
TAeTCH, YTO TedeHie YCTOHUNBOe M JaMIHADHOe, Y DABHEHUA TeMI0BOTO NOTPAHUYHOTO CJIOA
peuraloTca i oTHoIenuii wara k ;aMerpy ot 1,2 no 2,0, Korga B Ka4eCTBe HHIKOCTH
HETNOABLAYETCA BO3AYX, HpUUYEM JOMYCKAETCA H3MEHeHne [I0THOCTH, BABKOCTH If TENIo-
FIPOBOJHOCTH ¢ UBMEHEHNCM TeMIePATypPh.

Onpejessiiiach 3aBHCHMOCTh AOKATBHHX 3HAUeHNI Ynciaa HycceabTa o1 Mopudenuponan-
Horo uucaa I'popria, 1 HaiijleHa nmapaMeTpHyeckas 3aBHCUMOCTb KAk OT OTHONIEHWH LIara K
AMAMETPY, TaK 11 0T (e3pasMepnoil CKOpOCTH NOTOKA.

Ha samicuvocTs GespasMepHOl CROPOCTH HOTOKA 0T {(e3pasMepHOH ITIMHBL fTydka Tpyd
e BJIMHIOT HepeMeHHBe (H3UYeCKHe CROUCTBA [P YCI0BHN, ecin {e3pasMepHbie CKOPOUTH
TedeHHnA BRIMUCITIINCE 110 YCIOBHAM HA BHIXOJE.

TeoperTuueckue pacdeTsl 3HAYeHUI wieaa Hyceeapra OB IpOBepeHbl BRCHEPUMEHTAIBHO
114 JIBYVX IIyUKax Tpy6 ¢ oTHOLIeHUeM mara Kk juamMetpy 1,68 n 2,03 11pyu BOCTOAHHOM TETIIIOBOM
nortoke Ha crenie. Io/yueHHBIe CHOPOCTU TTOTORA PACTIOIATAIOTCH HUMKE PACYETHLIX KPHBBIX

3d CHET CVAREHIUT CeUeHNA NMOTOKRA, BRIBBAMHOTO VCTpoieTBOM (1o drkeanmi mara,



